Test both sides: With the arm out straight, the palm facing down, and the wrist then fully bent downward, can the thumb be pushed back to touch the forearm? If yes, add one point for each thumb.
hyper thumb online p
The 5-part questionnaire was designed as a quick check to see if someone has or may have had hypermobility (Hakim and Grahame, 2003). It has been used in clinics and in research and has been translated for use in several languages and tested in several countries (Glans et al., 2020).
There are two other tools that clinicians use in contemporary clinical practice and research. One assesses hypermobility in the arm (Nicholson and Chan, 2018), and the other hypermobility in the leg and foot (Ferrari et al., 2005 (children), Myer et al., 2017 (adults)).
Experts encourage clinicians to look more broadly than just testing the Beighton Score in a person presenting with local or widespread injuries and joint pain that they suspect may be related to hypermobility. However, while tools like the upper and lower limb assessments are important and helpful to the more expert clinician or researcher, they are complex and require skill. Most clinicians wishing to screen someone for hypermobility need quicker and more simple guidance.
Recently the hEDS/HSD Working Group of the International Consortium on Ehlers-Danlos syndromes and hypermobility spectrum disorders (IC-EDS and HSD, 2022) did an audit to determine which tests in the upper and lower limb tools most strongly suggest generalized joint hypermobility. Their findings are currently being studied in more detail. The aim is to determine whether adding specific extra tests (particularly ones that assess the shoulder, wrist, ankle, and toes) helps clinicians identify people with generalized hypermobility in ways that are better than only relying on the Beighton score.
Glans, M., Humble, M.B., Elwin, M. et al. Self-rated joint hypermobility: the five-part questionnaire evaluated in a Swedish non-clinical adult population. BMC Musculoskelet Disord 21, 174 (2020). -020-3067-1
Meyer, K.J., Chan, C., Hopper, L. et al. Identifying lower limb specific and generalised joint hypermobility in adults: validation of the Lower Limb Assessment Score. BMC Musculoskelet Disord 18, 514 (2017). (Free to download)
Hypermobile Ehlers-Danlos syndrome (hEDS) is generally considered the least severe type of EDS, although significant complications, primarily musculoskeletal, can and do occur. The skin is often soft and may be mildly hyperextensible. Subluxations and dislocations are common; they may occur spontaneously or with minimal trauma and can be acutely painful. Degenerative joint disease is common. Chronic pain, distinct from that associated with acute dislocations, is a serious complication of the condition and can be both physically and psychologically disabling. Easy bruising, functional bowel disorders, and cardiovascular autonomic dysfunction are common. Aortic root dilation, when present, is typically of a mild degree with no increased risk of dissection in the absence of significant dilation. Psychological dysfunction, psychosocial impairment, and emotional problems are common.
Joint hypermobility is a feature of many heritable and acquired disorders (see Differential Diagnosis), and may also occur as an asymptomatic and/or nonsyndromic finding. In order to reduce heterogeneity and enhance efforts to identify the genetic etiology, a formal diagnosis of hEDS should be made only when all of the diagnostic criteria are met. Individuals with signs and symptoms suggestive of a hereditary connective tissue disorder who fail to meet diagnostic criteria for hEDS or any other described condition should be considered to have hypermobility spectrum disorder (HSD) [Castori et al 2017].
Generalized joint hypermobility. The Beighton score [Beighton et al 1973] remains the best-validated tool for assessing joint hypermobility [Juul-Kristensen et al 2017]. In order to reduce false-positive Beighton scores, the 2017 hEDS diagnostic criteria recommend standardized performance of the Beighton test [Malfait et al 2017]. One point is scored for each of the following:
Feature B. Positive family history, with one or more first-degree relatives independently meeting the current diagnostic criteria for hEDS. Of note, a first-degree relative meeting prior diagnostic criteria for EDS, hypermobility type or type III EDS does not count toward this feature; the relative must meet current criteria for hEDS.
Note: Clinical distinction between the hypermobile and classic types of EDS is sometimes very difficult. With the exception of skin and soft tissue complications, much of the information in this section is derived from publications that collectively analyzed individuals with hypermobile and classic EDS, without specifying whether there was any difference in manifestations between the two types.
Bone density. There is very limited and contradictory evidence regarding bone mineral density in hEDS. Dolan et al [1998] found bone density to be reduced by up to 0.9 SD in individuals with EDS compared to healthy controls, but that study did not look specifically at individuals with hEDS. Compared to age- and sex-matched controls, Gulbahar et al [2006] reported bone density reduction of up to 0.5 SD among premenopausal women with joint hypermobility syndrome (now considered identical to hEDS). However, Carbone et al [2000] found no difference in bone density between women with hEDS and normal controls after adjusting for height, weight, and physical activity.
The frequency of periodontal manifestations such as friability, gingivitis, and gum recession is probably increased but has not been adequately studied specifically in the hypermobile type [Hagberg et al 2004, De Coster et al 2005, Castori et al 2010a]. De Felice et al [2004] reported an abnormally complex oral microvascular network in 12 individuals with classic or hypermobile EDS; potential correlation of this with periodontal disease has not been reported.
In a series of 2,813 individuals with Chiari malformation type 1, 12.7% were felt to also have a hereditary disorder of connective tissue, including many with hEDS [Milhorat et al 2007]. Among those with independently confirmed EDS, Chiari malformation was found in only one (4.7%) of 21 individuals with hypermobile EDS [Castori et al 2010a] and one (5.5%) of 18 individuals with headache and unspecified types of EDS [Jacome 1999]. The incidence of Chiari malformation among individuals with EDS has not been systematically studied, and the clinical relevance of this potential association is uncertain.
The 1997 Villefranche conference [Beighton et al 1998] simplified the classification and nomenclature of the Ehlers Danlos syndromes. The former EDS type III was renamed the hypermobility type. In 2017, the International Ehlers Danlos Syndrome Consortium published revised diagnostic criteria, and the name was modified slightly to hypermobile EDS (hEDS) [Malfait et al 2017].
It is now generally accepted that "benign familial articular hypermobility syndrome" and "joint hypermobility syndrome" are identical to hEDS and no longer thought to represent unique conditions [Grahame 1999, Tinkle et al 2009].
Joint laxity is a nonspecific manifestation of dozens of other disorders and syndromes. Functionally, joint hypermobility may be the result of ligamentous laxity (as in the heritable disorders of connective tissue and skeletal dysplasias) or hypotonia (as in mitochondrial diseases and other neuromuscular conditions). It can be difficult to distinguish between these mechanisms of pathology, especially in adults. When there is symptomatic joint hypermobility and no other specific diagnosis can be established, it is reasonable to diagnose hypermobility spectrum disorder [Castori et al 2017].
Braces are useful to improve joint stability. Orthopedists, rheumatologists, and physical therapists can assist in recommending appropriate devices for commonly problematic joints such as knees and ankles. Shoulders and hips present more of a challenge for external bracing. Occupational therapists may be consulted for ring splints (to stabilize interphalangeal joints) and wrist or wrist/thumb braces in affected individuals with small joint instability. A soft neck collar, if tolerated, may help with neck pain and headaches.
Many individuals will have undergone several orthopedic procedures prior to diagnosis. These often include joint debridement, tendon relocations, capsulorraphy, and arthroplasty. The degree of stabilization and pain reduction, overall patient satisfaction, and duration of improvement are variable, but usually less than in individuals without EDS [Aldridge et al 2003, Rose et al 2004, Rombaut et al 2011b]. In general, orthopedic surgery should be delayed in favor of physical therapy and bracing. When surgery is performed, the affected individual and physician should cautiously anticipate some improvement but expect less than optimal results. There is one report of long-term improvement in shoulder stability with Achilles tendon allograft reconstruction of the joint capsule in an individual with hEDS [Chaudhury et al 2012]. It is not yet known if this approach will be successful in other affected individuals. Unlike classic and vascular EDS, hypermobile EDS is not associated with increased risk for perioperative skin and soft tissue complications.
Wide-grip writing utensils can reduce strain on finger and hand joints. An unconventional grasp of a writing utensil, gently resting the shaft in the web between the thumb and index finger and securing the tip between the distal interphalangeal joints or middle phalanges of the index and third fingers (rather than using the tips of the fingers), results in substantially reduced axial stress to the interphalangeal, metacarpophalangeal, and carpometacarpal joints. These adjustments frequently result in marked reduction of pain in the index finger and at the base of the thumb. 2ff7e9595c
Comments